

 Semester: III
 Integrated M.Sc. Mathematics
 Academic Year: 2019 - 20

 Subject: 060090303 CC7 Fundamentals of Numerical Analysis
 Academic Year: 2019 - 20

### **Teaching Schedule**

**Course Objectives:** To study the fundamental concepts and mathematical steps for solution of equations, solution of linear system, Eigen value problems and interpolation methods so that students get sound knowledge and important aspects of the subject.

**Course outcomes:** Upon completion of the course, students shall be able to

**CO1:** calculate the numerical error viz. absolute error, relative error and percentage error in the solution.

**CO2:** understand the different numerical approach to solve the Algebraic and Transcendental equations with error part.

**CO3:** develop skill of solving the linear system of equations through various matrix Inversion methods.

**CO4:** derive all eigen values or a maximum eigen value and the related eigen vectors of a Matrix.

**CO5:** predict the missing data within the range of given information using various difference operators like forward, backward and central.

**CO6:** achieve numerical solution as an alternative way of analytical solution of a problem.

| Unit                                                                            | Sub<br>Unit | No. of<br>Lect.(s) | Topics                          | Reference Chapter/<br>Additional Reading                           | Teaching<br>Methodology<br>to be used | Active Learning Activities                                                                           | Evaluation<br>Parameter      |  |  |  |  |
|---------------------------------------------------------------------------------|-------------|--------------------|---------------------------------|--------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|
| Unit 1: Error analysis and solutions of algebraic and transcendental equations: |             |                    |                                 |                                                                    |                                       |                                                                                                      |                              |  |  |  |  |
|                                                                                 | 1.1         | 2                  | Errors in computations          | Ch#1, Ch#2<br>Numerical Methods<br>for Scientists and<br>Engineers |                                       | For Slow Learner:                                                                                    |                              |  |  |  |  |
|                                                                                 | 1.2         | 1                  | Bisection method                |                                                                    |                                       | Students must write answer of                                                                        | Unit Test -1<br>Assignment-1 |  |  |  |  |
| [4.0]                                                                           | 1.3         | 1                  | Regular-Falsi Method            |                                                                    | Chalk & Talk                          | question(s) given by teacher after                                                                   |                              |  |  |  |  |
| [10]                                                                            | 1.4         | 2                  | Iteration method                |                                                                    |                                       | completion of each method and verified by teacher to resolve any                                     |                              |  |  |  |  |
|                                                                                 | 1.5         | 1                  | Newton-Raphson method           | Rao                                                                |                                       | query of students.                                                                                   |                              |  |  |  |  |
|                                                                                 | 1.6         | 1                  | Secant method                   |                                                                    |                                       |                                                                                                      |                              |  |  |  |  |
|                                                                                 | 1.7         | 2                  | system of non- linear equations |                                                                    |                                       | <b>For Active Learner:</b><br>Student will solve exercise given in<br>book after completion of Unit. |                              |  |  |  |  |





Semester: III

Integrated M.Sc. Mathematics Subject: 060090303 CC7 Fundamentals of Numerical Analysis Academic Year: 2019 -20

| Unit 2 | : Nume                                               | rical solu                      | tion of linear system equations and                                                                                                                                                               | d matrix Inversion:                                                            |              |                                                                                                                                                                                                                                                                                                                         |                                       |
|--------|------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| [16]   | 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6<br>2.7<br>2.8 | 2<br>1<br>2<br>1<br>2<br>2<br>5 | Gauss Elimination methodPartial pivotingGauss Jordan methodLU decompositionGauss Jacobi methodGauss seidal methodRelaxation methodMatrix inversion method :Gauss Jordan methodGauss Jordan method | Ch#3 Numerical<br>Methods for Scientists<br>and Engineers<br>Sankara Rao       | Chalk & Talk | <ul> <li>For Slow Learner:<br/>Students must write answer of<br/>question(s) given by teacher after<br/>completion of each method and<br/>verified by teacher to resolve any<br/>query of students.</li> <li>For Active Learner:<br/>Student will solve exercise given in<br/>book after completion of Unit.</li> </ul> | Unit Test -1<br>and 2<br>Assignment-2 |
| Unit 3 | : Eigen                                              | value pro                       | oblems:                                                                                                                                                                                           |                                                                                |              |                                                                                                                                                                                                                                                                                                                         |                                       |
| [06]   | 3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6               | 1<br>1<br>1<br>1<br>1<br>1      | Jacobi method<br>Power method<br>QL method<br>Qr method<br>LU method<br>Generalized Eigen value problem                                                                                           | CH#4<br>Numerical Methods<br>for Scientists and<br>Engineers訳承. Sankara<br>Rao | Chalk & Talk | For Slow Learner:<br>Students must write answer of<br>question(s) given by teacher after<br>completion of each method and<br>verified by teacher to resolve any<br>query of students.<br>For Active Learner:<br>Student will solve exercise given in<br>book after completion of Unit.                                  | Unit Test -2<br>Assignment-3          |
| Unit 4 | : Interp                                             | olation:                        |                                                                                                                                                                                                   |                                                                                |              |                                                                                                                                                                                                                                                                                                                         |                                       |
| [20]   | 4.1<br>4.2                                           | 1<br>3                          | Finite differences operators<br>Newton's formulae for<br>interpolation                                                                                                                            | CH#6<br>Numerical Methods                                                      | Chalk & Talk | <b>For Slow Learner:</b><br>Students must write answer of<br>question(s) given by teacher after                                                                                                                                                                                                                         | Internal<br>Examination               |
|        | 4.3<br>4.4                                           | 2                               | Central difference Interpolation<br>formulae<br>Lagrange's Interpolation                                                                                                                          | for Scientists and<br>Engineers                                                |              | completion of each method and<br>verified by teacher to resolve any<br>query of students.                                                                                                                                                                                                                               | Assignment-4                          |



Dr. Hardik Patel



Semester: III

#### Integrated M.Sc. Mathematics Subject: 060090303 CC7 Fundamentals of Numerical Analysis

Academic Year: 2019 -20

|     |   | formulae                        | Rao |                                      |
|-----|---|---------------------------------|-----|--------------------------------------|
| 4.5 | 2 | Divided Differences             |     | For Active Learner:                  |
| 4.6 | 3 | Inverse interpolation           |     | Student will solve exercise given in |
| 4.7 | 4 | Interpolation in two dimensions |     | book after completion of Unit.       |
| 4.8 | 3 | Cubic spline interpolation      |     |                                      |

#### Text books:

1. K. Sankara Rao., "Numerical Methods for Scientists and Engineers" - PHI learning private Ltd., 2012

#### **Reference books:**

- 1. S. S. Sastry , "Intriduction of Numerical Analysis"- PHI learning private Ltd. , 2010.
- 2. Golub. G. H. and Ortega. J. M., "Scientific Computing and differential equations: An introduction to 🔛 umerical Methods", Academic Press, 1992.
- 3. Atkinson. K. E., "An introduction to Numerical Analysis", Wiley, 1989.
- 4. Jain. M. K., Iyenger. S. R. K., Jain. R. K., "Numerical Methods for Scientific and Engineering 😥 omputation", New Age International Pvt. Ltd., 1996. 🔛
- 5. Conte. S. D. and de Boor. C., "Elementary Numerical Analysis-An Algorithmic Approach", McGraw- 🖼 ill, 1981.

### **Course Objectives and Course Outcomes Mapping:**

- Understand the fundamentals concepts of numerical methods: CO1, CO2,CO5, CO6
- To become familiar with problem solving techniques: CO2, CO3, CO4

### **Course Units and Course Outcomes Mapping:**

| Unit No. | Unit                                                                   |     | Course Outcomes |              |              |              |              |
|----------|------------------------------------------------------------------------|-----|-----------------|--------------|--------------|--------------|--------------|
|          |                                                                        | C01 | CO2             | CO3          | <b>CO4</b>   | CO5          | CO6          |
| 1        | Error analysis and solutions of algebraic and transcendental equations | √   | $\checkmark$    |              |              |              | $\checkmark$ |
| 2        | Numerical solution of linear system equations and Matrix Inversion     | √   |                 | $\checkmark$ |              |              | $\checkmark$ |
| 3        | Eigen value problems                                                   |     |                 |              | $\checkmark$ |              | $\checkmark$ |
| 4        | Interpolation                                                          |     |                 |              |              | $\checkmark$ | $\checkmark$ |





Semester: III

Integrated M.Sc. Mathematics Subject: 060090303 CC7 Fundamentals of Numerical Analysis Academic Year: 2019 -20

#### **Programme Outcomes (PO)**

#### PO1: Knowledge

Provides knowledge about the fundamentals of pure, applied and computing mathematics and its applications to students that creates the opportunities in industries and research centers.

#### **PO2: Core Competence**

Creates competency in science and mathematics to formulate, analyses and solve problem and/or also to pursue advanced study or research.

#### PO3: Breadth

Trains students having good knowledge in unearth core of academia and industry by the roots of mathematics.

### **PO4: Evaluation**

Imparts in students to raise trial and error-based curiosity and problem-solving functionality with research based advanced tutorial for higher level decision makings tools.

#### **Programme Outcomes and Course Outcomes mapping:**

| Programme Outcomes | Course Outcomes |              |              |            |              |     |  |  |
|--------------------|-----------------|--------------|--------------|------------|--------------|-----|--|--|
|                    | C01             | CO2          | CO3          | <b>CO4</b> | CO5          | CO6 |  |  |
| P01                | $\checkmark$    |              | $\checkmark$ |            | $\checkmark$ |     |  |  |
| PO2                | $\checkmark$    | $\checkmark$ |              | ✓          | $\checkmark$ | ✓   |  |  |
| PO3                |                 | ✓            |              |            | √            |     |  |  |
| P04                |                 |              | ✓            |            |              | ✓   |  |  |

